Single Pair Ethernet – one pin connector pattern for all industrial applications

From |
Single Pair Ethernet

Single Pair Ethernet (SPE) is a popular industrial communication technology that enables cost-effective and space-saving connection of sensors and extends the performance of classic Ethernet. It supports IP-based communication and Power over Data Line (PoDL) for IoT devices and other applications.

SPE continuity from IP20 to M12

SPE continuity from IP20 to M12

Phoenix Contact has developed connectors for SPE environments with IP20 and IEC 63171-5 for M8 and M12 versions in IP67. These connectors are user-friendly, available as patch cables or freely assembled versions. They meet industrial requirements in terms of impedance, electric strength, return attenuation, and coupling attenuation necessary in industrial environments.

Simple design-in with uniform pin connector pattern

Simple design-in with uniform pin connector pattern

Phoenix Contact offers IP20 and IP65/IP67 connectors with a uniform pin pattern, simplifying handling and facilitates both servicing and installation. These connectors allow for easy assembly in the system field, and their standardized M8 and M12 housing screw connections allow for seamless transition from previous Ethernet or bus systems to the current standard. They are suitable for data transmission rates up to Gigabit and meet future SPE standards.

Advanced Shielding Technology – the shielding of the future

Advanced Shielding Technology – the shielding of the future

Phoenix Contact’s Advanced Shielding Technology replaces traditional zinc die-casting for crimp sleeves with a liquid metal shield connection. This innovative method increases mechanical robustness and prevents short circuits between the shield molding and contact carrier. The technology improves M8/M12 connectors by providing robustness, availability, durability, and overload resistance. It supports Industry 4.0 and the Industrial Internet of Things, supporting miniaturization in field and device cabling.

PNO supports SPE pin connector pattern of IEC 63171-7 for hybrid applications

The PNO guideline for “PROFINET Cabling and Interconnection Technology – Guideline for PROFINET Version 5.3” has defined hybrid M12 Single Pair Ethernet as the new pin connector pattern, marking the first time a user organization has opted for an SPE pin connector pattern..

M12 Hybrid – the perfect addition to PoDL

Single Pair Ethernet (SPE) offers the advantage of integrating power supply and data transmission via the same cable, making it ideal for supplying power and data in confined spaces. Phoenix Contact Group and TE Connectivity have developed SPE M12 hybrid connectors in accordance with IEC 63171-7, enabling hybrid interfaces with SPE and power contacts in M12 format. SPE is particularly beneficial in robotics, as it combines flexible and space-saving wiring with fast response times. SPE M12 hybrid interfaces integrate seamlessly into existing Ethernet infrastructures and offer simple plug-and-play connections.

Learn more about Single Pair Ethernet.

Technology partnership between ENERCON and Phoenix Contact

From |

Into the green future with the Next Generation Control System

Phoenix Contact has partnered with ENERCON. A leading manufacturer of wind turbine generators, to develop future-proof automation solutions for their platforms. The alliance focuses on enhancing pitch, azimuth, and automation systems for new platforms with the e-nacelle. Moreover, Phoenix Contact, driven by the All Electric Society’s vision of renewable energy availability and affordability, focuses on electrification, networking, and automation technologies. The partnership aims to provide expertise in the field of automation technology.

Into the green future with the Next Generation Control System. Phoenix Contact has partnered with ENERCON.

High-performance hardware including the support of high safety requirements

The wind turbine generator uses a central control system and decentral I/O stations for data transmission. The Next Generation Control System (NGCS) uses Profinet protocol and Profisafe for safety realted communication. The BPC 9102S safety PLC is the highest-performance controller, with an Intel Core i7-10700TE processor and an integrated Profisafe safety controller. ENERCON chose the Axioline system for decentral I/O modules due to its robustness and compact design. Furthermore, the AXC F XT PMP 1000 V AC extension module is also developed, measuring current and voltage grid variables with high precision. Also, provide protective devices in accordance with the VDE-AR-N 4110 and VDE-AR-N 4120 directives.

High-performance hardware including the support of high safety requirements

Any combination of high-level language code and model-based tools

ENERCON and Phoenix Contact have partnered to develop an open PLCnext Technology ecosystem, allowing automation projects to be implemented without being subject to the restrictions of proprietary systems. The controller, based on a Linux kernel, offers real-time capability and patented task handling, reducing development time and effort. Continuous in-process testing on HIL test benches ensures system requirements are fully met. The control platform offers future-proofing and integrates technologies like OPC UA and TSN. The partnership allows for short paths to challenges and decision-making, with a support team providing active support remotely and directly at ENERCON locations and prototype construction sites.

Any combination of high-level language code and model-based tools

Joint development of new technologies

ENERCON and Phoenix Contact’s partnership has resulted in the creation of innovative technologies that could significantly transform the wind industry.

wind

Learn more about wind power.

The path to Profinet with TSN

From |

The optimal network concept for artificial intelligence

Time Sensitive Networks (TSN) can revolutionize automation when combined with Profinet. Artificial intelligence (AI) in automation, such as ChatGPT, requires large amounts of data to be transported from the field to the AI system, affecting the control process. High-precision time synchronization is essential for processing and evaluating distributed data from the field level. TSN standards contribute to this, and the migration process is expected to be rapid. The combination of Profinet with TSN is ideal for meeting these requirements in a single network.

The path to Profinet with TSN

Currently separate networks for fieldbus and IT

Currently, requirements for optical anomaly detection using AI tools are implemented in separate networks due to limited transmission speed and high-precision time synchronization is also not currently available in IT networks and systems. This separation allows IT communication to maintain real-time capability, but also has costs and challenges in future extensions or changes. A “convergent network” can improve these functions by combining IT and OT disciplines in a single network, ensuring that the Ethernet structure, known as Time-Sensitive Networks (TSN), does not affect each other.

Currently separate networks for fieldbus and IT

TSN as a tool box for special purposes

TSN can be compared to a tool box containing several tools. Each of these tools serves a specific purpose. Here is a brief explanation of the tools:

Quality of Service (QoS) is crucial for real-time-critical traffic, while preemption reduces data forwarding variance. In addition, precision Time Protocol (PTP) is used for high-precision time synchronization in AI applications, allowing for microsecond-range synchronization accuracies. Synchronous communication ensures that terminal-to-terminal response time remains consistent. Brownfield integration is necessary for Profinet with TSN, as it requires new hardware in all devices involved. However, a smooth transition from Profinet RT to Profinet with TSN is feasible, as any existing Profinet device can be used at the TSN area boundaries. By combining these tools effectively, Profinet with TSN offers advantages without changing the look and feel of the network.

TSN as a tool box for special purposes

Areas of application for Profinet with TSN

Profinet with TSN offers benefits in applications like optical anomaly detection, vibration data, 3D images, frequency synchronization, alarm messages, and firmware updates. These tools can be used for Profinet communication between controllers and field devices without changing the application view of Profinet. OPC UA with pub/sub communication is more suitable for data exchange between different controllers. The OPC Foundation is working on a usage concept for TSN in OPC UA Field Exchange.

Areas of application for Profinet with TSN

Learn more about Time-Sensitive Networking (TSN).

Use of the Secure Edge Box in production

From |

Comprehensive protection of the network

The IIoT trend has increased the need for better production transparency and control, leading to higher demands on access security. Phoenix Contact offers a Secure Edge Box to address these challenges. Data acquisition solutions often have different interfaces and communication protocols, making them confusing and difficult to administer. In addition, the diversity of solutions requires a high level of expertise, which may require external help. For this purpose, a standardized and secure remote connection to the peer must be set up. At best, a secure edge interface is established between manufacturing and other networks. To support users, Phoenix Contact offers a Secure Edge Box that solves the challenges listed..

Comprehensive protection of the network

Signal light for checking VPN connections

The Secure Edge Box is a tool used to protect production from attacks and sabotage by controlling data traffic and dividing the network into small areas. It uses an industrial firewall router, the mGuard firewall, to separate the lower-level network from manufacturing. In addition, firewall rules can be entered or managed centrally using the mGuard Device Manager tool. The box also allows remote VPN access, allowing employees to monitor the VPN connection status.

Signal light for checking VPN connections

Additional security settings via a managed switch

The box features a second switch controlling the DMZ port of the firewall router, allowing service technicians to access specific devices in the area via this port. The mGuard firewall records the configuration through digital inputs. Additionally, if the control cabinet door is opened and there is a potential risk of tampering on site, the mGuard firewall can send an alert to a configurable receiver. A managed switch with 16 ports from the FL mGuard 2000 series is used for networking. Additional security settings can be made when configuring the switches, including user administration and authentication on RADIUS or LDAP servers.

Edge PC for data acquisition and forwarding to a cloud

The edge PC with PLCnext Runtime in the Secure Edge Box can be upgraded via the PLCnext Store, a digital marketplace for PLCnext Technology. It can implement local data acquisition with visualization and anomaly detection. In this way, for example, energy data or analog sensor data is transmitted to the edge PC via MQTT or OPC UA. With the second approach, the data is forwarded to an online hosted cloud. The edge PC normalizes, compresses, and stores data temporarily, ensuring compatibility with almost all systems. Both approaches can be used in parallel to increase data availability, and additional apps for data anomaly detection can be installed. Regulatory intervention in the process is also possible.

Edge PC for data acquisition and forwarding to a cloud

Ready-made, functionally extendable control cabinet solution

Additionally, the Secure Edge Box can be ordered as a ready-made control cabinet solution. In addition to CE-marked it compiles with the UL 508A standard. It can be extended with additional switches or othr components. The box features a main switch, VPN tunnel, and DMZ port control, and a signal tower. Moreover, it can accommodate up to 60 cables using a cable entry system. The box protects against cyberattacks by controlling incoming and outgoing data traffic, allowing local and cloud data processing.

Learn more about Digital Factory.

Using existing infrastructures for SPE

From |
SPE

Phoenix Contact tested various cable types in building automation to determine if existing cables can be reused for Single Pair Ethernet (SPE). The investigation compared the technically relevant sizes of the cables with the limit values of ISO/IEC 11801-3, IEEE 802.3cg, and IEEE 802.3da. In addition, the quality of signal transmission over different cable lengths was examined using parameters to assess signal integrity.

Determination of the cable types

Determination of the cable types

The KNX protocol is widely used in building automation in Europe, particularly in Germany. J Y(ST)Y 2x2x0.8 type cables are used for bus signals, power installations, and process data processing. The YV 2×0.8/1.4 jumper wire, also known as a bell wire, is used for point-to-point connections. These cables were examined for their reuse in SPE connections.

Selection of suitable measured variables and measurement methods

Selection of suitable measured variables and measurement methods

The Fluke DSX 8000 field tester was used for cabling measurements, qualifying Ethernet cabling, and testing patch cables. In contrast, comparative measurements were conducted using the ZNBT vector network analyzer. Cables with good transmission properties meet limit values for RL, IL, and TCL and require constant independence of the cable. Phoenix Contact SPE connector was used for easy connection.

Investigation of realistic cabling structures

Investigation of realistic cabling structures

Moreover, existing bus line infrastructures can have unknown topologies, making it difficult to dismantle the installed cables. The transmission path has branch lines of varying lengths. A T-shaped line arrangement with master cables and branch lines was examined. The results showed that short cable lengths and non-terminated cable ends were problematic. Long cables were found suitable for SPE transmission.

Signal-based investigations

Signal-based investigations - SPE

The KNX bus line and jumper wire’s Signal-to-Noise Ratio (SNR) and Slicer Maximum Absolute Error were measured using two evaluation boards. The KNX bus line achieved a maximum range of 420 m with a minimum SNR of 30.1 dB and a Slicer Maximum Absolute Error of 0.15, while the jumper wire reached a maximum range of 910 m.

Learn more about Single Pair Ethernet.

Push-X: Tool-free connection increases efficiency

From |
Push-X technology

New connection – yet proven a billion times over

Phoenix Contact has introduced the Push-X technology, a tool-free connection method that enables flexible conductor connections without pretreatment. This innovative technology uses the Push-in connection from Phoenix Contact, which has been used for years and is primarily found in the terminal block sector. Additionally, the new technology uses a trigger inside the terminal block, triggers a pre-tensioned spring, and has been redesigned for vertical connection.

One connection compatible with all conductors

The Push-X system is suitable for all types of conductors, including rigid and flexible ones. It uses a pretensioned spring on delivery, releasing the locking mechanism with light pressure. Eeven the smallest flexible conductors can be connected without tools. The orange actuating push button signals the connection and audible feedback. The system is easy to release and reuse, with any tool being used to return the button to its original position.

Push-X technology

New to the market, but already a whole family

The Push-X family has also introduced new XTV terminal blocks, available in nominal cross-sections of 6 mm², 10 mm², and 16 mm². These terminal blocks are part of the Clipline Complete system, offering advantages such as vertical connection, lateral entry, and easy-to-read terminal point marking. Furthermore, the XTV technology is compatible with other systems and can be combined with other accessories. So, switching to using terminal blocks with Push-X technology will not be a problem. The terminal blocks are similar to spring-cage and Push-in terminal blocks.

Save a lot of time with Push-X technology

The All Electric Society is transforming infrastructure for renewable energy distribution and storage, increasing demand for switchgear and controlgear systems. To improve efficiency, tool-free connection technologies like Push-in and Push-X are being used. Push-X eliminates the need to change tools and requires no further checks, making it quick and easy to switch.

Learn more about Push-X technology

Virtual commissioning with the RF::Suite and PLCnext Technology

From |

Cost and time savings with increased safety and better quality

The digital twin, often associated with the Asset Administration Shell (AAS) in the German “Plattform Industrie 4.0” initiative, is a crucial tool in the manufacturing sector for securing automation applications. It provides a digital image of a complete automation application, enabling users to simulate individual components’ behavior and provide a comprehensive view of the entire production process.

Virtual commissioning with the RF::Suite and PLCnext Technology

Decisive use case of the industrial digital twin

The digital twin is a digital representation of manufacturing system components, used to simulate and analyze production systems. It helps identify potential fault scenarios and simulates system behavior under different conditions. Virtual commissioning is a crucial use case for industrial digital twins, especially in complex production systems. It allows for cost-effective testing of virtual models before completion, enables safe testing without endangering people, machines, or the environment, and helps detect faults early, improving end-product quality and shortening startup time.

Decisive use case of the industrial digital twin

Efficient implementation based on the RF::Suite

EKS InTec GmbH’s RF::Suite is a software tool for virtual commissioning in machine building and systems manufacturing. Its modular and scalable approach allows for flexible use in various applications, making it an integral part of the automotive industry. The tool also offers benefits beyond virtual commissioning, such as instructing employees and ensuring realism independently of the production system’s control hardware.

PLCnext Technology open ecosystem for current and future automation tasks

Phoenix Contact’s PLCnext technology is an open ecosystem for automation, combining automation tasks and IIoT demands in a single device. It includes the PLCnext Engineer software platform, PLCnext Store digital marketplace, PLCnext Community, and systemic cloud integration. The firmware architecture is Linux-based, allowing users to use IEC 61131-3 code, high-level languages, and Matlab Simulink control algorithm models. The platform also allows users to add Linux-based components, data management, and communication protocols.

PLCnext Technology open ecosystem for current and future automation tasks

Virtual SiL simulation of the complete system to be automated

Virtual commissioning can involve various control systems, including hardware-in-the-loop (HiL) concepts and virtual automation systems. The RF::Suite generates simulations of the planned physical system, allowing for initial test scenarios and code improvements. PLCnext Engineer Simulation allows users to configure, execute, and test projects in a virtual environment, including IEC 61131-3 code, Matlab Simulink models, and high-level language components. Further development of PLCnext Engineer Simulation will enable the simulation of the entire automation system, creating a digital twin for automation. This approach allows for seamless interaction between the physical and virtual systems, ensuring optimal performance and optimization.

Virtual SiL simulation of the complete system to be automated

Learn more about PLCnext technology and Virtual commissioning

Varioface system cabling for the Simatic ET 200SP HA distributed I/O system

From |

Smart connectivity

Phoenix Contact offers Varioface system cabling, a plug-and-play solution for fast and error-free connection between control and field-level sensors and actuators. Embracing the plug-and-play principle, this product family aligns with the All Electric Society vision of the future, offering comprehensive planning tools and hardware products. In addition, the Varioface system cabling is industry-compatible, contributes to greater clarity and efficiency, and reduces costs. It saves up to 90% of the time required for conventional single-core wiring by using various components and D-Sub connector connections.

Smart connectivity

Use of more compact and less expensive 24 V DC I/O modules

Digital control and power signals are processed differently in various applications. 230 V I/O modules are more expensive and require more space than 24 V signal levels. To optimize cost and space, a 24 V DC I/O module combined with Phoenix Contact’s PLC-Interface relay family is ideal. This results in a compact eight-channel relay module, which can be integrated directly into the system cabling solution. Moreover, the PLC-Interface product family offers several advantages, including plug-in design, screw or push-in connection technology, numerous switching elements, special sensor/actuator series, narrow design, and modular design, allowing space and cost-optimization for a wide range of application requirements.

Use of more compact and less expensive 24 V DC I/O modules

Quick and easy wiring with Push-in or screw connection technology

Phoenix Contact offers termination boards for control cabinets. In addition, this allows users to wire single-core wires of sensors and actuators quickly and easily using Push-in direct connection technology or screw connection technology. The VIP series features terminal block markings that correspond to Simatic ET 200SP HA terminal blocks. This ensures quick mounting and vibration resistance. Additionally, the complete variable coupling level from Phoenix Contact is equipped with high-position D-Sub connectors, allowing connections between passive or active field modules and plug-in I/O devices. A range of lengths and halogen-free materials are available for optimal cable connection.

Quick and easy wiring with Push-in or screw connection technology

Tailor-made solution with the online configurator

Lastly, Phoenix Contact offers a comprehensive web shop for system cabling products. This includes an online configurator for component selection. Furthermore, users can easily select the desired Simatic ET 200SP HA I/O module, navigate through options, and transfer the solution to their shopping cart. what’s more, this efficient, modular, and plug-in solution saves time and money.

Tailor-made solution with the online configurator

Learn more about System cabling for controllers.

Smart management of street lighting from Giardinello

From |

Energy savings of up to 80 percent possible

Smart infrastructure solutions are not limited to large cities, as evidenced by the Sicilian municipality of Giardinello. While some think of smart cities as futuristic mega-cities, there are many smaller towns and villages where these solutions can be implemented. The principle behind smart city applications is to make life more convenient for citizens, contributing to improvement or mitigating deterioration. In times of crisis, such as the Corona pandemic and energy shortages, smart city solutions can offer opportunities for smaller cities to adapt and improve their infrastructure.

Smart street lighting

The challenge: integrating different types of luminaires

Giardinello, a small Sicilian town, is considering smart solutions for its public infrastructure to reduce energy consumption and save costs. The town has converted to LED technology and is now implementing a modern, digital solution for public street lighting management. The goal is to provide flexibility, energy savings, and a scalable technology that eliminates dependence on one manufacturer. The application must be designed and protected accordingly, considering the different types of luminaires and their impact on the village’s character.

Smart street lighting

The solution: communication via the LoRaWAN standard …

Modern lights use a Zhaga socket for interface and communication, unlike historical lamps with no modern Zhaga interface. The LoRaWAN standard, based on the OSI model, includes both the link and network layers, with double AES encryption for end-to-end cryptography. This new communication technology addresses the limitations of traditional Zhaga sockets and offers improved connectivity and security.

communication via the LoRaWAN standard

… as well as the Zhaga interface or a universal control device

LoRaWAN is a low power (LP)WAN technology used in Europe for data forwarding. It operates in the narrowband ultra-high frequency range (863-870 MHz) and offers up to 40 kilometers of range in rural areas and high penetration of building walls in urban areas. To implement a LoRaWAN network, luminaires use Luminaire Controller Units (LCU) or universal control units (LCU) with Dali-2 protocol. The system architecture follows a classic star topology, with three LoRaWAN gateways in Giardinello for high-quality illumination and connectivity.

Smart street lighting

The special feature: Lighting management as software-as-a-service

The Sicilian municipality is using the Grovez.io IoT platform for urban infrastructure applications. The platform features a LoRaWAN network server, decoder applications, and interfaces for communication. The municipality’s street lighting operator, Giardinello, now uses the Smart Lighting Service as a SaaS, allowing employees to control street lighting remotely. The combination of modern LED technology and LoRaWAN-based control technology allows for individual luminaire control and diagnosis.

Smart street lighting

The future: integration of vehicle traffic sensors and establishment of an environmental monitoring system

The Smart Lighting Service offers lighting management software that allows users to set various dimming levels, affecting energy consumption and luminaire lifespan. The solution simplifies the setting, and sensors in the field trigger automation. With demand-based lighting, energy consumption can be reduced by up to 80%. Giardinello is exploring further possibilities, including integrating traffic sensors and environmental monitoring systems using LoRaWAN-capable sensors. The community is already smarter than many large cities.

Learn more about Intelligent street lighting and Smart city: sustainable and livable.

Wireless communication in production facilities

From |

The key to efficient, sustainable, and reliable operation

Phoenix Contact aims to address climate change challenges by focusing on the All Electric Society, a world with abundant and affordable renewable energy. This involves optimizing communication infrastructure in manufacturing, reducing primary energy demands, and increasing machine efficiency. Companies must support this development across all areas, particularly in production, to avoid a competitive disadvantage. Technological approaches like Industry 4.0 and powerful network infrastructure are essential for rapid response to changing market and environmental conditions.

New automation approaches in the logistics sector

Industry 4.0 involves digitalizing and networking automation devices within and across a company, using technologies like WLAN, Bluetooth, and 5G. The Internet of Things (IoT) integrates even the smallest devices and new automation approaches like automated guided vehicles. This approach improves manufacturing system availability, performance, and quality while increasing flexibility.

Wi-Fi 6 with up to 70 percent lower latency

Industrial trends like IoT and AI demand high-performance systems for data availability, latency, and throughput. Wireless LAN (WLAN) solutions can extend or replace wired data transmission, simplifying handling of mobile machines and docked parts. The Wi-Fi 6 standard has increased theoretical data transmission speed by 30% and reduced latency by up to 70% through Multi-User MIMO. The Wi-Fi 6(E) extension offers license-free 6 GHz frequency band with additional 80 MHz and 160 MHz channels, allowing for additional WLAN networks without mutual interference.

Compact and robust wireless modules for AGVs and AMRs

Phoenix Contact has developed FL WLAN 1010 and FL WLAN 1100 wireless modules for automated guided vehicle (AGV) and autonomous mobile robot (AMR) systems. These modules address the challenges of reliable data connection, limited installation space, quality wireless communication, QoS availability, vehicle robustness, and diagnostics and maintenance functions. The integrated REST interface allows for easy installation in vehicles, saving time and eliminating incorrect configurations during vehicle commissioning.

Careful planning of the wireless channel design

WLAN building infrastructure is crucial for AGVs/AMRs, with proper placement of access points, metal installation, and suitable antenna positioning determining wireless coverage. Simulation tools can help determine coverage and reflections. Careful planning of wireless channel design and application can reveal potential issues early. Designing WLAN infrastructure can be complex and requires experience. Phoenix Contact specialists offer support in WLAN infrastructure design.

Learn more about Digital Factory.